1. Prove that multiplication is well-defined on \mathbb{Q}. Begin by stating exactly what you need to prove.
2. Prove that $(\mathbb{Q},+, \cdot)$ is a field by checking all of the required axioms one-by-one (even the ones proven in class).
3. Denote the elements (i.e. equivalence classes) in \mathbb{Q} by $\left[\frac{a}{b}\right]$, omitting writing E in the superscript. An element $\left[\frac{a}{b}\right] \in \mathbb{Q}$ is said to be positive if a is positive. Define a binary relation $<$ on \mathbb{Q} by setting, for each $\left[\frac{a}{b}\right],\left[\frac{c}{d}\right] \in \mathbb{Q}$,

$$
\left[\frac{a}{b}\right]<\left[\frac{c}{d}\right]: \Leftrightarrow\left[\frac{c}{d}\right]-\left[\frac{a}{b}\right] \text { is positive. }
$$

(a) Prove that the notion of positivity is well-defined on \mathbb{Q}. Conclude that $<$ is welldefined.
(b) Prove that $<$ is a total strict order on \mathbb{Q}.
(c) Prove that < satisfies Axioms (O3) and (O4) (written on page 12 of Sally's book). This makes \mathbb{Q} an ordered field.
4. For $n \geq 2$, show that for any $a, b \in \mathbb{Z}, a \equiv b(\bmod n)$ if and only if $a-b$ is divisible by n.
5. Let $n \geq 2$ and consider the ring $(\mathbb{Z} / n \mathbb{Z},+, \cdot)$. Prove that there is no binary relation $<$ that makes this ring an ordered ring, i.e. there is no total strict order $<$ on $\mathbb{Z} / n \mathbb{Z}$ satisfying Axioms (O3) and (O4).
6. Let $(R,+, \cdot)$ be a ring and let $0_{R}, 1_{R}$ denote its additive and multiplicative identities. Prove:
(a) The additive and the multiplicative identities are unique.
(b) Each $x \in R$ has a unique additive inverse.
(c) Each $x \in R$ has at most one multiplicative inverse.
(d) For each $x \in R, 0_{R} \cdot x=0_{R}=x \cdot 0_{R}$.
(e) If every nonzero ${ }^{1} x \in R$ has a multiplicative-inverse, then R satisfies the cancellation axiom, namely for all $x, y \in R$, if $x \cdot y=0_{R}$ then $x=0_{R}$ or $y=0_{R}$. Thus, a field is a domain.
If $0_{R}=1_{R}$ then R has only one element, namely, $R=\left\{0_{R}\right\}$. In this case, we call R the zero ring or the trivial ring.
7. Let $(R,+, \cdot)$ be a ring and let $0_{R}, 1_{R}$ denote its additive and multiplicative identities. A subset $R_{0} \subseteq R$ is called a subring if ($\left.R_{0},+, \cdot\right)$ is a ring. Recall that, unlike the textbook, our definition of ring includes the existence of multiplicative identity; in particular, R_{0}

[^0]should have both additive and multiplicative identities, by definition; denote them by $0_{R_{0}}$ and $1_{R_{0}}$, respectively.
(a) Prove that for a subring $R_{0} \subseteq R, 0_{R_{0}}=0_{R}$ and $1_{R_{0}}=1_{R}$.
(b) For a subset $R_{0} \subseteq R$, prove that R_{0} is a subring if and only if $R_{0} \ni 1_{R}$ and for all $a, b \in R_{0}$, the elements $a-b$ and $a \cdot b$ are also in R_{0}.
(c) Show by example that a subring of a field need not be a field.

[^0]: ${ }^{1}$ Not equal to 0_{R}.

